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Design of a Breath Analysis System for Diabetes
Screening and Blood Glucose Level Prediction

Ke Yan, David Zhang*, Fellow, IEEE, Darong Wu, Hua Wei, and Guangming Lu

Abstract—It has been reported that concentrations of several
biomarkers in diabetics’ breath show significant difference from
those in healthy people’s breath. Concentrations of some biomark-
ers are also correlated with the blood glucose levels (BGLs) of
diabetics. Therefore, it is possible to screen for diabetes and pre-
dict BGLs by analyzing one’s breath. In this paper, we describe
the design of a novel breath analysis system for this purpose. The
system uses carefully selected chemical sensors to detect biomark-
ers in breath. Common interferential factors, including humidity
and the ratio of alveolar air in breath, are compensated or han-
dled in the algorithm. Considering the intersubject variance of the
components in breath, we build subject-specific prediction models
to improve the accuracy of BGL prediction. A total of 295 breath
samples from healthy subjects and 279 samples from diabetic sub-
jects were collected to evaluate the performance of the system. The
sensitivity and specificity of diabetes screening are 91.51% and
90.77%, respectively. The mean relative absolute error for BGL
prediction is 21.7%. Experiments show that the system is effective
and that the strategies adopted in the system can improve its accu-
racy. The system potentially provides a noninvasive and convenient
method for diabetes screening and BGL monitoring as an adjunct
to the standard criteria.

Index Terms—Blood glucose level (BGL), breath analysis, chem-
ical sensors, diabetes screening, electronic noses.

I. INTRODUCTION

D IABETES has become a great threat to human health. The
timely diagnosis and frequent monitoring are important

for managing the disease. To diagnose or monitor diabetes, tra-
ditionally, one must draw blood samples to check if his blood
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glucose level (BGL) falls within the normal range. This method
is accurate but painful, invasive, and inconvenient [1]. There-
fore, noninvasive diabetes screening and BGL prediction is
arousing more and more interest recently. Approaches including
reverse iontophoresis, fluorescence technology, bioimpedance
spectroscopy, and so on [2], [3] have been studied. These ap-
proaches are painless and convenient, but still suffer disadvan-
tages such as lack of specificity, inaccuracy due to subject’s
movement and sweating, skin irritation, etc. [2], [3].

Breath analysis is a noninvasive approach for clinical appli-
cations. By analyzing the concentrations of the biomarkers in
breath, we are able to detect disease, monitor disease progres-
sion, or monitor therapy [4]. Lots of efforts have been devoted
to study the breath biomarkers of diabetes. Acetone [5]–[8] as
well as many other volatile organic compounds (VOCs) [9] in
breath are proved to either have abnormal concentrations in di-
abetics or correlate with BGL. Compared to other approaches,
breath analysis is readily acceptable and easy to collect samples
[10], which makes it an attractive way for noninvasive diabetes
screening and BGL prediction [1], [10].

Gas chromatography, mass spectroscopy (GC/MS), and re-
lated techniques can be used to analyze components in breath.
For example, proton-transfer-reaction mass spectrometry (PTR-
MS) has been applied to measure acetone during exercise and
sleep [11], [12]. GC/MS-related methods have high accuracy
but relatively high cost, low portability, and complex usage,
which limits their applications in massive diabetes screening and
household BGL monitoring. Another breath analysis method
makes use of chemical sensor systems, also known as elec-
tronic noses (e-noses), which are generally cheaper, faster, more
portable, and easier to operate. With the development in sensor
technology, their accuracy has been improving. They have been
applied in medicine for bacteria identification [13], diagnosis
of renal disease [14], diabetes, airway inflammation [15], and
present satisfactory performance.

A few chemical sensor systems have been developed for ei-
ther diabetes diagnosis [15]–[18] or BGL prediction [19], [20].
However, there are still problems not solved in these systems.
First, the chemical sensor array should be further optimized for
the specific application. Second, in previous systems, common
fluctuations in breath samples were not well taken into account,
such as humidity and the ratio of alveolar air. More impor-
tantly, considering the intersubject variance of the components
in breath, subject-specific BGL prediction models should be
built [1]. Furthermore, the number of samples in the experi-
ments of previous studies are small.

In this paper, a novel breath analysis system for both dia-
betes screening and BGL prediction is proposed. The sensors
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TABLE I
BASIC PARAMETERS OF THE PROPOSED DEVICE

Device Parameters Specifications

Size 22 cm × 15 cm × 11 cm
Sampling duration 144 s
Sampling frequency 8 Hz
Injection flow rate 50 mL/s
Chamber volume 100 mL
Number of sensors 11

array is carefully selected with the help of two pilot devices to
improve the accuracy. Some of the sensors are under tempera-
ture modulation, which is an effective technique to enrich the
information content and enhance the selectivity of gas sensors.
A temperature-humidity sensor and a carbon dioxide sensor are
used to compensate for fluctuations in breath samples. In the al-
gorithm of BGL prediction, subject-specific prediction models
are built by incorporating subject identity information into the
feature vector. The purpose of these optimization strategies is to
enhance the accuracy and robustness of the system.

To evaluate the proposed system, a series of experiments were
made. Experiments with simulated samples confirm the system’s
capability in predicting the concentration of acetone with the
presence of interference in breath. In the experiments with real
breath samples, a total of 295 healthy and 279 diabetes breath
samples were collected. The sensitivity and specificity of dia-
betes screening is 91.51% and 90.77%, respectively. The mean
relative absolute error (MRAE) for BGL prediction is 21.7%.
The results prove the effectiveness of the system as well as the
optimization strategies used in our system. The hemoglobin A1c
(HbA1c) values of 62 diabetic subjects were also predicted. The
prediction accuracy for BGL and HbA1c is compared.

The rest of this paper is organized as follows. Section II is
the overall description of the system. Section III introduces the
optimization strategies in the sensor array and prediction algo-
rithms. The details of the experiments with simulated samples
and real breath samples are in Sections IV and V, respectively.
Section VI concludes the paper.

II. SYSTEM DESCRIPTION

A. Structure of the Device

The proposed system consists of two parts: a device for breath
measurement and a set of algorithms for data analysis. In the
device, a vacuum pump and a gas chamber make up the gas
route. The pump draws breath or air from outside and injects
it into the gas chamber. The gas chamber is a metal container
with sensors embedded in its shell. A signal processing circuit
is used to magnify the sensors’ signals and filter high frequency
noises. The processed signals are digitized and transmitted to a
computer by a data acquisition card. A fan is placed next to the
gas chamber to take away the heat emitted by the sensors. Some
parameters of the device are listed in Table I.

It is worth noting that instead of the common box-shaped gas
chamber, we designed a column-shaped gas chamber, as shown
in Fig. 1. The internal shape of the chamber is cylindrical and

Fig. 1. Snapshot of the column-shaped gas chamber. Sensors are embedded
on its wall. Gas enters the chamber from the inlet hole at one end. The outlet
end is removed in the figure to show the inside of the chamber.

TABLE II
SUMMARY OF THE SENSOR ARRAY

Channel Model Manufacturer Function

1 TGS4161 Figaro, Inc., Japan Carbon dioxide
2 TGS822 VOCs, hydrogen,

carbon monoxide, etc.
3 TGS826
4 TGS2610-D00
5 SP3S-AQ2 FIS, Inc., Japan
6 GSBT11 Ogam, Inc., Korea
7 WSP2111 Winsen, Inc., China
8 TGS2600-TM Figaro, Inc., Japan
9 TGS2602-TM
10 WSP2111-TM Winsen, Inc., China
11 HTG3515CH Humirel, Inc., France temperature
12 humidity

the external shape is hexagon. The sensors are embedded on
the six facets of the chamber. This design has three advantages:
its internal shape allows gases to flow smoothly; its symmetry
ensures that the gas concentration in the head space of each
sensor is similar; the size of the chamber is miniature.

B. Sensor Array

The device is designed to measure the VOCs, carbon diox-
ide, humidity, and temperature in breath samples. It is equipped
with 11 sensors, including 6 ordinary metal oxide semicon-
ductor (MOS) sensors, 3 temperature modulated MOS sensors,
a carbon dioxide sensor, and a temperature-humidity sensor.
There are 12 input channels since the temperature-humidity
sensor has two input channels. Table II summarizes the model,
manufacturer, and function of each sensor. The suffix “-TM” in-
dicates that the sensor is a temperature modulated sensor. This
sensor array is specially optimized for the purpose of diabetes
screening and BGL prediction. The optimization scheme will
be introduced in Section III-A.
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C. Sampling Procedure

Similar to [15], when collecting a breath sample, a subject
is asked to take a deep breath and exhale into a 600-mL Tedlar
gas bag through a disposable mouthpiece. Then, the filled gas
bag is plugged onto the connector of the device. The computer
software controls the device to complete the breath measurement
automatically. All breath samples are measured by the same
process, which includes four stages:

1) Baseline stage (1 s): The baseline values of the sensors
are recorded for future data preprocessing.

2) Injection stage (7 s): The pump is ON. Breath is drawn
from the gas bag to the gas chamber at a constant speed.
The sensors’ signals start to respond to the injected breath.

3) Reaction stage (56 s): The pump is OFF. The sensors
continue reacting with the components in breath. The re-
sponses of the MOS sensors without temperature modu-
lation (TM) reach their maximum values.

4) Purge stage (80 s): The pump is ON again. Pure air is
drawn in to clean the gas chamber for 80 s. The sensors’
responses gradually return to their baselines. After the
responses remain stable in their baselines, the device is
ready for the measurement of the next sample.

After the measurement process, we will get a digitized breath
sample represented by 12 response curves (which will also be
referred to as a “sample” hereinafter). Each response curve has
144 s × 8Hz = 1152 data points. The samples will be analyzed
with the algorithms in the next section.

D. Data Analysis Methods

1) Signal Preprocessing: For each sensor, we compute its
baseline value by averaging its response in the baseline stage.
The value is then subtracted from the whole response curve. It
is done to eliminate the interference of background noise of the
sensors [21]. Humidity compensation is carried out by building
a linear humidity response model for each sensor, which will
be described in Section III-B. Temperature compensation is
not performed since it did not show big significance in our
experiments.

2) Feature Extraction: After signal preprocessing, the re-
sponses of the ten chemical sensors (see channels 1–10 in
Table II) are concatenated into a feature vector. The feature di-
mension (1152 × 10 = 11520) is very high, so principal compo-
nent analysis (PCA) is used to extract low-dimensional features.
PCA projects high-dimensional data into a low-dimensional
subspace while keeping most of the data variance. In the case of
BGL prediction, considering the intersubject variance between
breath samples, we further add a categorical feature to indicate
the subject’s identity. The detail of this feature is described in
Section III-C.

3) Classification and Regression: Support vector machine
(SVM) is among the most popular techniques for classification.
It is a kernel-based method suitable for both linear and nonlinear
problems. The main idea of the algorithm is to find a maximum
margin hyperplane to separate the training samples. It has been
proved to generalize well on test samples [22]. SVM has been
adopted as the decision algorithm in many chemical sensor sys-

Fig. 2. Framework of the data analysis algorithms. The rounded rectangles in
blue are the features. The rectangles in green are the algorithms.

tems [13], [23]. We will use it to discriminate between healthy
and diabetes samples in the case of diabetes screening. The sup-
port vector regression (SVR) [24] algorithm is chosen to solve
the BGL prediction problem, since it also has good generaliza-
tion ability. The details of SVM and SVR can be found in [22]
and [24].

The entire framework of the data analysis algorithms is dis-
played in Fig. 2.

III. SYSTEM OPTIMIZATION

In order to enhance the system’s accuracy and robustness for
diabetes screening and BGL prediction, several optimization
strategies are proposed, including sensor selection, compensa-
tion of influential factors, and development of subject-specific
prediction models.

A. Sensor Selection

The sensor array is the key part of a chemical sensor system.
The sensors should be able to detect the breath biomarkers of
diabetes, among which acetone is the most studied one. The
concentration of breath acetone of diabetics is higher than that
of healthy people [5]–[7]. Furthermore, Wang et al. [7] split
30 diabetic subjects into 4 groups and found a linear corre-
lation between the mean concentration of breath acetone and
the mean BGL of each group. Turner et al. [25] observed that
the breath acetone declined linearly with BGL during hypo-
glycaemic clamps for each volunteer. Besides acetone, com-
pounds such as ethanol [26], carbon monoxide [27], alkanes
[28], and methyl nitrate [29] in breath have also been proved
to either have abnormal concentrations in diabetics or correlate
with BGL. Some researchers have attempted to combine the
concentrations of multiple VOCs and achieved good results in
diabetes diagnosis and BGL prediction [30], [31].
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To detect acetone, one way is to use specially designed ace-
tone sensors [8], [16]. The Si:WO3 sensor developed by Righet-
toni et al. [8] has high sensitivity and selectivity to acetone.
On the other hand, an array of carefully selected cross-sensitive
VOC sensors can also have good performance in detecting one
or more kinds of gases [21], [32], when pattern recognition al-
gorithms are applied to discriminate different gas “patterns.” So
we first chose a set of candidate sensors to build pilot e-nose de-
vices, then collected breath samples to evaluate them and select
the best sensor combination.

Commercially available sensors are used as candidate sen-
sors because they are easier to acquire, robust, and have good
diversity. Some of the candidate sensors can detect and quantify
VOCs as low as 0.05 parts per million (ppm) [33], indicating
that their precision is satisfactory. Two pilot devices were made
with two batches of breath samples collected for sensor selection
[34], [35]. Nine sensors were eventually selected to be employed
in the final device, i.e., the sensors in channel 2–10 in Table II.
Sensors were selected using exhaustive searching experiments,
which evaluate the performance of every sensor combination
and select the best array in the sense of the highest accuracy in
diabetes screening and BGL prediction.

Among the selected sensors, there are three MOS sensors
under TM. MOS sensors under TM are believed to provide richer
information and have better selectivity than those operated in
the ordinary way [36], [37]. In the proposed system, we applied
a staircase modulation voltage [36], [37] to three MOS sensors.
Experiments with real breath samples show that sensor arrays
with these TM sensors have higher accuracy. In the case of
diabetes screening, all of the top 50 arrays contain the three
TM sensors. To our knowledge, this is the first time that the
TM technique is used in breath analysis systems. The results
confirm its efficacy.

B. Compensation for Influential Factors

In breath analysis systems, influential factors such as humid-
ity and the proportion of alveolar air in breath samples affect the
responses of sensors. Compensation for these factors is impor-
tant but often neglected. In this section, the influence of these
factors will be studied and the methods for compensation will
be introduced.

1) Humidity: Humidity compensation is important in breath
analysis systems, because human breath contains water vapor,
and many VOC sensors are sensitive to humidity. An experiment
was made to study the influence of humidity to the sensors. Ace-
tone samples in five concentrations at four humidity levels were
provided to the sensors. Results show that if the concentration
of acetone is fixed, the maximum value of each sensor rises
approximately linearly as the humidity rises. The water vapor in
acetone samples has an additive effect to the response of the sen-
sors. Thus, a “humidity coefficient” for each sensor can easily be
estimated by linear regression, describing the increase of the sen-
sor’s maximum response when humidity increases 1%RH [38].
The humidity compensation model for each VOC sensor is

shown in

R̂b
n (t) = Rb

n (t)
(

1 − sn
ΔRHb

max(Rb
n (t))

)
. (1)

In (1), Rb
n (t) is the baseline-removed response curve of the

nth sensor in the bth breath sample; sn is the humidity coef-
ficient of the nth sensor; ΔRHb is the difference of humidity
between the bth breath sample and the environment; R̂b

n (t) is
the compensated response curve. The proportion of magnitude
which is considered to be brought by the water vapor in breath
is subtracted. Experiment results in Section V-C show that the
compensation improves the accuracy of the system.

Temperature in the gas chamber was also measured. Because
the temperature was relatively stable among samples, tempera-
ture compensation is not applied.

2) Proportion of Alveolar Air: General breath samples con-
sist of two parts: dead-space air from the upper airway and
alveolar air from the lungs. VOCs are exchanged between blood
and alveolar air. In the case of diabetes screening and BGL pre-
diction, dead-space air is a contaminant and dilutes the concen-
trations of VOCs in breath samples [15], [39]. So the proportion
of alveolar air in a breath sample is an influential factor. This
proportion is decided by the phase of the breath. In end-tidal
breath, alveolar air is prevailing; whereas breath drawn from the
initial phase contains more dead-space air.

Some researchers [19] tried to collect the two parts of breath
separately with two cascade gas bags. However, the estimation
of the volume of dead-space air may be inaccurate. Moreover,
some patients are unable to blow up the two cascade gas bags
because of their illness. Another method is to estimate the pro-
portion of alveolar air from the CO2 concentration in breath
samples [39]. Higher CO2 concentration is an indication of
higher proportion of alveolar air. Thereby, we employ a CO2
sensor in the proposed device. The responses of the CO2 sensor
and the VOC sensors are combined to extract PCA features,
which allows the pattern recognition algorithms to learn a better
prediction model taking the information of CO2 concentration
into account. The experiment results in Section V-C show that
with the information from the CO2 sensor, better accuracy is
acquired.

C. Development of Subject-Specific Prediction Models

Researchers have identified the intersubject variance of the re-
lationship between breath acetone and BGL [9], [25]. As shown
in [25], although breath acetone is correlated with BGL for each
subject, the baseline values of breath acetone varied among
subjects. The author of [1] concluded that calibration of acetone
with BGL for each individual is required. However, in previous
breath analysis systems aiming at predicting BGL [19], [20],
the prediction models are not subject-specific.

To make prediction models subject-specific, an intuitive way
is to build a model for each subject with samples from the same
subject as training samples. But this method is not applicable
when the number of samples from one subject is not enough for
an accurate model. In this paper, we propose to add a categorical
feature in each feature vector to indicate the subject’s identity.
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Concretely, for each test sample in the database, a prediction
model is trained using all the other samples. For each training
sample, the additional categorical feature will be 1 if the training
sample is from the same subject with the test sample, or be 0
otherwise. The test sample will also have the additional feature
with the value 1. The advantage of this method is that all the
training samples can contribute to the prediction model while the
training samples from the same subject with the test sample can
be emphasized. Thus, the influence brought by the intersubject
variance can be reduced. From the results in Section V-C, we
find this method can markedly improve the accuracy for BGL
prediction.

IV. EXPERIMENTS WITH SIMULATED SAMPLES

An experiment was made to test the system’s ability to quan-
tify the main breath biomarker of diabetes, i.e., acetone. Accord-
ing to [5], the concentration of breath acetone in healthy subjects
is ranged from 0.22 to 0.80 ppm, while that in subjects with type
2 diabetes is from 1.76 to 3.73 ppm. For subjects with type-1
diabetes, breath acetone could be as high as 21 ppm [25]. So we
prepared acetone samples in eight concentrations (0.1, 0.2, 0.5,
1, 2, 5, 10, 20 ppm), with two samples for each concentration.
The 16 samples was measured by our device using the sampling
procedure in Section II-C. Then, the concentration of acetone
in each sample is predicted by leave-one-out cross validation.
The data analysis method is preprocessing + PCA + SVR as
introduced in Section II-D. The prediction is evaluated by its
mean absolute error (MAE) defined in (2), where xi and x̂i are
the true and predicted concentration of the ith sample, respec-
tively; n = 16. In this experiment, the MAE is 0.16 ppm, which
indicates the system can predict the concentration of acetone
with high accuracy

MAE =
1
n

n∑
i=1

|xi − x̂i |. (2)

Although acetone is among the most abundant VOCs in
breath [1], there are many other VOCs in breath that may
interfere the measurement of acetone. For example, isoprene
in breath has a characteristic concentration of 0.1 ppm [11].
Thus, another experiment was made to test the system’s abil-
ity to measure acetone with the presence of interfering VOCs.
Eight breath samples were collected from each of five healthy
volunteers. Then, an addition of acetone was mixed with these
40 breath samples. The eight samples of each volunteer were
made to contain an additional acetone of 0, 0.2, 0.3, 0.7, 1.7,
3.3, 5.0, and 6.7 ppm, respectively. These mixed samples are
used to simulate the existence of interfering VOCs and the vari-
ation of baseline acetone concentrations in real breath samples.
Then, the concentration of the additional acetone in each sample
is predicted. The leave-one-out strategy and the preprocessing
+ PCA + SVR algorithm are applied. It is worth noting that
the categorical feature described in Section III-C is added to
build subject-specific prediction models. In this experiment, the
MAE is 0.22 ppm, proving that the system is able to predict the
concentration of acetone in the presence of interfering VOCs
and the variation of baseline acetone concentrations.

TABLE III
BASIC INFORMATION OF THE DIABETIC SUBJECTS

Item Value

Number 87
Male/Female 39/48
Age 39–91
Type 1/Type 2 1/86
Disease duration (years) 0.5–19
Blood glucose level (mmol/L) 4.4–23.1

Fig. 3. Distribution of BGLs of the 279 diabetic samples.

V. EXPERIMENTS WITH BREATH SAMPLES

More than 500 real breath samples were collected to evaluate
the system’s performance on diabetes screening and BGL pre-
diction. Section V-A is the overview of the samples. Section V-B
summarizes the data analysis procedure. Section V-C provides
the results and some discussion.

A. Overview of the Breath Samples

A total of 295 healthy samples and 279 diabetes samples were
collected from Guangdong Provincial Hospital of Traditional
Chinese Medicine (Guangzhou, China). The health states of the
healthy subjects were confirmed by physical examinations. The
diabetes samples were from 87 inpatient volunteers. For each
diabetic subject, several samples were collected at 2 h after
meal in different days together with the simultaneous BGLs.
The number of samples per subject ranges from 1 to 11. Some
information about the diabetic subjects is listed in Table III.
Fig. 3 shows the distribution of BGLs of the diabetic samples.

Hemoglobin A1c (HbA1c) is also an important parameter for
the diagnosis and monitoring of diabetes. It serves as a marker
for average BGL during the preceding 3–4 months with a higher
weight over the latest 30 days [40]. Correlation between breath
acetone and HbA1c of diabetic subjects has been reported [6],
[7]. In this study, 62 out of the 87 subjects had the HbA1c test
within the last 13 days. Their HbA1c values range from 5.1%
to 15.2%. An experiment was made to predict the HbA1c of
the 62 subjects and the accuracy is compared with that of BGL
prediction.

B. Data Analysis Procedure

1) Distinguishing Between Healthy and Diabetes Samples:
Diabetes screening was achieved by distinguishing between
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healthy and diabetes samples. After a digitized breath sample
was acquired, it underwent baseline removal, humidity compen-
sation, and PCA feature extraction. The ratio of variance in PCA
was set to be 99.98%, extracting about 60 features. They were
then scaled to have zero mean and unit variance. SVM [41] with
a Gaussian kernel was used for classification. A total of 140
healthy and 140 diabetes samples were randomly selected to
train the SVM classifier. Another 139 healthy and 139 diabetes
samples were used for testing. We ran this procedure 50 times
and computed the average sensitivity and specificity.

2) BGL and HbA1c Prediction: In these two cases, only the
diabetes samples were investigated. The data analysis proce-
dures for BGL and HbA1c prediction are mostly the same.
Baseline removal, humidity compensation, and PCA feature ex-
traction were applied to the samples. The optimized ratio of
variance was set to be 99.1%, extracting about 12 features after
PCA. The dimension is lower than that in diabetes screening so
as to prevent the regression model from overfitting. The features
were further scaled to have zero mean and unit variance. The
leave-one-out cross-validation protocol was employed. When
the BGL of one sample was predicted, the categorical feature
representing the subjects’ identity described in Section III-C
was added. However, when the HbA1c was predicted, only the
first breath sample of each subject was used. There is no need
to add the categorical feature since each subject had only one
sample. SVR [41] with a linear kernel was adopted to do the
prediction.

Three evaluation criteria were utilized to quantify the accu-
racy of the prediction. The MAE is the average deviation of the
prediction from the true target. The MRAE measures the rela-
tive error by normalizing the absolute error with the true target.
The correlation coefficient r measures the linear correlation be-
tween the true target and the predicted value. If we denote xi

as the true target (BGL or HbA1c) of the ith sample, x̂i as the
predicted value, n as the number of samples, x̄i and ¯̂xi as the
mean of all the true and predicted values, then the MRAE and r
can be defined as follows:

MRAE =

(
1
n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣
)

× 100% (3)

r =
∑n

i=1 (xi − x̄i)(x̂i − ¯̂xi)√∑n
i=1 (xi − x̄i)2

√∑n
i=1 (x̂i − ¯̂xi)2

. (4)

The aforementioned experiments are used to evaluate not only
the performance of the whole system, but also the effectiveness
of the system optimization strategies.

C. Results and Discussion

1) Distinguishing Between Healthy and Diabetes Samples:
Fig. 4 exhibits the average responses of the healthy samples and
the diabetes samples. To observe their differences more clearly,
we have made a comparison in Fig. 5. For most VOC sensors
(S2-S10), the mean responses of the diabetes samples are larger
than that of the healthy samples, showing that the concentration
of VOCs in breath of the diabetics is higher than that of the
healthy subjects.

Fig. 4. Average responses of the two classes. Left: healthy; right: diabetes.
S1 is a CO2 sensor; S2–S7 are ordinary MOS sensors; S8–S10 are temperature
modulated MOS sensors, so their responses are staircase-shaped.

Fig. 5. Average responses of each sensor in the two classes. The coordinates
on x-axis are the sensors’ indices. S1 is the CO2 sensor and S2-S10 are VOC
sensors. The y-axis is the mean of the maximum value of the preprocessed
response. Error bars represent the standard deviations. For VOC sensors, the
mean responses of the diabetes samples are larger than that of the healthy ones.

The final sensitivity and specificity for diabetes screening are
91.51% and 90.77%, respectively. The breath analysis system
can distinguish between healthy and diabetes samples with a
promising accuracy. The accuracy is comparable to previous
studies, especially given the fact that the database in this study
is larger. The result shows that the system has the potential to
be an assistive tool for diabetes screening.

2) BGL and HbA1c Prediction: In order to observe the differ-
ence between breath samples from subjects with different BGLs,
we divide the diabetes samples in our database into four groups.
The BGL thresholds are set to be 7.4, 9.7, and 13.2 mmol/L,
so as to make the number of samples in each group close to
each other. The mean responses of the VOC sensors in the four
groups are shown in Fig. 6. The mean response is ascending
from the first to the last group for most sensors except S6 and
S9, which is probably because S6 and S9 have higher sensitivity
to the interfering components than to acetone. It should also be
noticed that the standard deviation in each group is large, which
indicates that there are overlaps between groups. This result
shows that the prediction task is challenging. The discoveries
above are consistent to those in [7].
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Fig. 6. Mean responses of the VOC sensors in different BGL groups. The
diabetes samples are divided into 4 groups according to their BGLs. The coor-
dinates on x-axis are the sensors’ indices. The y-axis is the mean of the maximum
value of the preprocessed response. Error bars represent the standard deviations.
For most sensors, the mean response is ascending from the first to the last group.

Fig. 7. Scatter diagram for BGL prediction. The x-axis is the true BGL. The
y-axis is the predicted BGL. The MAE, MRAE, and correlation coefficient of
the prediction are 2.18, 21.7%, and 0.641, respectively.

TABLE IV
COMPARISON OF THE PERFORMANCE ON DIABETES SCREENING

AND BGL PREDICTION

Sensitivity Specificity MRAE
Method (%) (%) MAE (%) r

No HC, no CO2 90.23 88.87 2.40 24.0 0.623
No HC, add CO2 90.81 89.13 2.25 22.3 0.631
Add HC, no CO2 90.74 90.14 2.29 23.0 0.636
Add HC, add CO2 91.51 90.77 2.18 21.7 0.641

BGLs of 279 samples from 87 diabetic subjects are predicted
using the leave-one-out protocol. Correlation between the true
and the predicted BGLs can be observed from the scatter dia-
gram in Fig. 7. The MAE, MRAE, and correlation coefficient
of the prediction are 2.18, 21.7%, and 0.641, respectively. The
result is better than a latest study [20], in which a chemical sen-

TABLE V
COMPARISON OF THE PERFORMANCE ON BGL PREDICTION

Method MAE MRAE (%) r

Without subject identity information 2.74 27.4 0.350
With subject identity information 2.18 21.7 0.641

Fig. 8. Relationship between the number of samples collected from a subject
and the prediction MAE. Groups 1–4 contain subjects who have 1, 2, 3–5, and
6–11 samples, respectively. The bars show the number of subjects in each group
(corresponding to the y-axis on the left). The red line shows the MAE of the
samples in each group (corresponding to the y-axis on the right). The MAE
drops as the number of samples increases.

sor system was designed to predict the BGL of 30 samples with
MRAE = 25.24%.

The MAE, MRAE, and correlation coefficient of the HbA1c
prediction are 1.86, 21.0%, and 0.56, respectively. The MAE
and MRAE are lower than that in the BGL prediction experi-
ment, which is possibly because HbA1cs are more stable and
range in a smaller interval. The BGL prediction models are
subject-specific and in fact more accurate, so the correlation
coefficient of BGL prediction is higher.

3) Effectiveness of the Optimization Strategies: In this sec-
tion, the effect of the optimization strategies proposed in this
paper is assessed. First, the accuracies acquired with or with-
out the compensation algorithms in Section III-B are compared.
The results for both diabetes screening and BGL prediction are
demonstrated in Table IV. In the tables, HC is short for humid-
ity compensation. CO2 stands for the information from the CO2
sensor. For diabetes screening, the addition of HC and CO2
improves the sensitivity and specificity. For BGL prediction,
with the addition of HC and CO2 , the MAE and MRAE are
reduced and the correlation coefficient is increased. Therefore,
the proposed algorithms aiming at compensating fluctuations of
humidity and the proportion of alveolar air are effective.

Table V shows that the BGL prediction accuracy is improved
by the strategy of building subject-specific prediction models.
We can infer that the influence of the intersubject variance de-
scribed in [9] and [25] has been reduced. Fig. 8 gives another
hint on how much the subject identity information helps the
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prediction. The diabetic subjects are grouped according to the
number of samples collected from them in the database. Groups
are designed so that the number of subjects in each group is close
to each other. Then, we compute the MAE of BGL prediction
in each group. We find that as the number of collected samples
increases, the MAE (the red curve in Fig. 8) decreases. The sub-
jects with the most samples collected has the lowest MAE. This
is probably because that with more training samples provided
for each subject, the subject-specific prediction model can be
more accurate. But this hypothesis still needs further validation
using a larger database. To sum up, the subject identity infor-
mation is important for the training of the prediction model; to
improve the prediction accuracy, we can increase the number of
training samples for each subject.

VI. CONCLUSION

This paper proposes a breath analysis system for diabetes
screening and BGL prediction. The system includes a breath
measurement device and a set of data analysis algorithms. The
device has the advantage of being noninvasive, portable, and
easy to operate.

To increase the accuracy and robustness of the system, tar-
geted improvements were made on the sensor array, preprocess-
ing, and feature extraction algorithms. The improvements can be
roughly categorized into two aspects. In the aspect of medicine,
some results in breath analysis studies were consulted. A CO2
sensor was employed to compensate for the difference of propor-
tion of alveolar air in breath samples. Subject-specific prediction
models were built for BGL prediction to reduce the influence
of the intersubject variance. In the aspect of sensor technology,
an optimal cross-sensitive VOC sensor array was selected with
the aid of two pilot devices and two batches of breath sample
collection. Temperature modulated MOS sensors were adopted
and proved to be useful. The humidity drift of the sensors was
compensated. The effectiveness of these improvement strategies
were confirmed by experiments. These strategies are expected
applicable not only in the proposed system, but in other breath
analysis systems as well.

More than 500 breath samples were collected to evaluate the
performance of the system. We achieved a promising accuracy in
diabetes screening. For BGL and HbA1c prediction, the MRAE
is 21.7% and 21.0%, respectively. The BGL prediction result
is better than previous breath analysis systems, but still not
quite adequate for practical use. One of the error sources is the
intersubject variance of the components in breath samples. We
have made attempts to reduce the influence of this variance by
introducing subject identity feature. With more training samples
for each subject and more sophisticated prediction models, the
error may be further diminished. Since our experiments were
not conducted in strictly controlled environments, there is also
intrasubject variance caused by factors such as diet, exercise,
and insulin injection. The influence of these factors needs to be
further studied to build a prediction model properly taking them
into consideration [1], [42]. Larger database should be collected
to validate the models.
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endogenous acetone and isoprene in exhaled breath during sleep,” Phys-
iol. Meas., vol. 33, no. 3, pp. 413–428, 2012.

[13] M. Trincavelli, S. Coradeschi, A. Loutfi, B. Soderquist, and P. Thunberg,
“Direct identification of bacteria in blood culture samples using an elec-
tronic nose,” IEEE Trans. Biomed. Eng., vol. 57, no. 12, pp. 2884–2890,
2010.

[14] Y.-J. Lin, H.-R. Guo, Y.-H. Chang, M.-T. Kao, H.-H. Wang, and
R.-I. Hong, “Application of the electronic nose for uremia diagnosis,”
Sens. Actuators B. Chem., vol. 76, no. 1, pp. 177–180, 2001.

[15] D. Guo, D. Zhang, N. Li, L. Zhang, and J. Yang, “A novel breath analysis
system based on electronic olfaction,” IEEE Trans. Biomed. Eng., vol. 57,
no. 11, pp. 2753–2763, Nov. 2010.

[16] P. Wang, Y. Tan, H. Xie, and F. Shen, “A novel method for diabetes
diagnosis based on electronic nose,” Biosens. Bioelectron., vol. 12, no. 9,
pp. 1031–1036, 1997.

[17] Q. Zhang, P. Wang, J. Li, and X. Gao, “Diagnosis of diabetes by im-
age detection of breath using gas-sensitive laps,” Biosens. Bioelectron.,
vol. 15, no. 5, pp. 249–256, 2000.

[18] J.-B. Yu, H.-G. Byun, M.-S. So, and J.-S. Huh, “Analysis of diabetic
patient’s breath with conducting polymer sensor array,” Sens. Actuators
B. Chem., vol. 108, no. 1, pp. 305–308, 2005.

[19] D. Guo, D. Zhang, L. Zhang, and G. Lu, “Non-invasive blood glucose
monitoring for diabetics by means of breath signal analysis,” Sens. Actu-
ators B. Chem., vol. 173, no. 6, pp. 106–113, Oct. 2012.

[20] H. M. Saraoglu, A. O. Selvi, M. A. Ebeoglu, and C. Tasaltin, “Electronic
nose system based on quartz crystal microbalance sensor for blood glucose
and HbA1c levels from exhaled breath odor,” IEEE Sens. J., vol. 13,
no. 11, pp. 4229–4235, Nov. 2013.

[21] A. Hierlemann and R. Gutierrez-Osuna, “Higher-order chemical sensing,”
Chem. Rev., vol. 108, no. 2, pp. 563–613, 2008.

[22] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[23] A. Amini, M. A. Bagheri, and G. Montazer, “Improving gas identification
accuracy of a temperature-modulated gas sensor using an ensemble of
classifiers,” Sens. Actuators B. Chem., vol. 187, pp. 241–246, 2013.



YAN et al.: DESIGN OF A BREATH ANALYSIS SYSTEM FOR DIABETES SCREENING AND BLOOD GLUCOSE LEVEL PREDICTION 2795

[24] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[25] C. Turner, C. Walton, S. Hoashi, and M. Evans, “Breath acetone con-
centration decreases with blood glucose concentration in type I diabetes
mellitus patients during hypoglycaemic clamps,” J. Breath Res., vol. 3,
no. 4, p. 046004, Dec. 2009.

[26] P. R. Galassetti, B. Novak, D. Nemet, C. Rose-Gottron, D. M. Cooper,
S. Meinardi, R. Newcomb, F. Zaldivar, and D. R. Blake, “Breath ethanol
and acetone as indicators of serum glucose levels: an initial report,” Dia-
betes Technol. Ther., vol. 7, no. 1, pp. 115–123, 2005.

[27] P. Paredi, W. Biernacki, G. Invernizzi, S. A. Kharitonov, and P. J. Barnes,
“Exhaled carbon monoxide levels elevated in diabetes and correlated with
glucose concentration in blood: A new test for monitoring the disease?,”
CHEST, vol. 116, no. 4, pp. 1007–1011, 1999.

[28] M. Phillips, R. N. Cataneo, T. Cheema, and J. Greenberg, “Increased
breath biomarkers of oxidative stress in diabetes mellitus,” Clin. Chim.
Acta, vol. 344, no. 1, pp. 189–194, 2004.

[29] B. Novak, D. Blake, S. Meinardi, F. Rowland, A. Pontello, D. Cooper,
and P. Galassetti, “Exhaled methyl nitrate as a noninvasive marker of
hyperglycemia in type 1 diabetes,” Proc. Nat. Academy Sci., vol. 104,
no. 40, pp. 15613–15618, 2007.

[30] M. Greiter, L. Keck, T. Siegmund, C. Hoeschen, U. Oeh, and H. Paretzke,
“Differences in exhaled gas profiles between patients with type 2 diabetes
and healthy controls,” Diabetes Technol. Ther., vol. 12, no. 6, pp. 455–463,
2010.

[31] J. Lee, J. Ngo, D. Blake, S. Meinardi, A. M. Pontello, R. Newcomb, and
P. R. Galassetti, “Improved predictive models for plasma glucose esti-
mation from multi-linear regression analysis of exhaled volatile organic
compounds,” J. Appl. Physiol., vol. 107, no. 1, pp. 155–160, 2009.

[32] C. Di Natale, R. Paolesse, G. D’Arcangelo, P. Comandini, G. Pennazza,
E. Martinelli, S. Rullo, M. Roscioni, C. Roscioni, and A. Finazzi-Agrò,
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